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The theoretical study of relaxation processes occurring behind 
shock wave fronts in gases is of great interest for physical kinetics 
and the kinetics of chemical  reactions, In particular, one of the 
basic processes is that of establishment of equilibrium with respect 
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to the translational degrees of freedom of the gas molecules.  Solution 
of the system of nonlinear hydrodynamic equations (which can be 
solved only numerically) can yield only approximations of the macro-  
scopic characteristics of the process; the relaxation kinetics remain 
inaccessible. An extremely promising approach to these problems is 
the Monte Carlo method; this method makes it possible to avoid solv- 
ing the equations and to treat the processes on the molecular level,  
In conjunction with the method of "periodic boundary conditions" [1] 
the Monte Carlo method has been successfully used m solve equilibrium 
and nonequilibrium problems in statistical physics and physical kinetics 
[ 1 ,2 ] .  In this paper we use the Monte Carlo method to investigate the 
kinetics of energy dissipation in ordered motion; we use a spatially 
homogeneous model  of a system of neutral particles which belong to a 
flow and counterflow. A physical example of this type of problem is 
the process of "Maxwellization" which occurs behind shock wave fronts. 
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Two groups of particles, 54 in each flow, formed a closed system. 
The particle density was 10tScm-S. Each of the flows was homogeneous 
in composit ion; the mass ratio for particles in different flows was 
approximately 2000. Th e initial kinetic energy of each particle cor- 
responded to 3 �9 104~ K. 

We will introduce the laboratory coordinate system. Assume that 
V I = Vz and V t" = (VZx + V. 2 )l/z are, respectively,  the longitudinal 

�9 Y O and transverse components of the velocity. All particles had nly 
longitudinal velocity components at the initial instant of t ime.  The 
quantities TI] = mV{{Z and T j =  mV~/ 2  are arbitrarily called the 
"longitudinal" and "transverse" components of the temperature. Par- 
ticle collisions were assumed to be completely elastic, while the par- 
ticles themselves were regarded as noninteraeting solid spheres. The 
coordinates of the particles were not included in the calculat ion 
procedure [2]: the kinetics of diffusion were considered in the velocity 
space for scattering of fast light particles by slow heavy ones. It is 

known that this process is characterized by three relaxation t imes 
with respect to the translational degrees of  freedom. In our case the 
solution was terminated when a Maxwellian distribution was estab- 
lished within the group of light particles. The calculation procedure 
employed an algorithm for solving the problem of Maxwellization of 
a nonequilibriurn mixture of two gases whose initial temperatures 
are different [2]. I n  effect  the solution amounts to computer imple-  
mentat ion of a Markov chain with nonzero transition probabilities. 
The results of calculating one chain are probabilistic and depend on 
the choice of the initial pseudorandom number. 

Of particular importance in studies of this type are factors relating 
to the  details of the resultant distribution functions. Therefore these 
functions must be obtained with a high degree of accuracy, and this 
is not provided for by a single calculation of the chain using 54 par- 
t icles of one kind. Therefore to increase the accuracy to one percent 
and better, each particular variant (or chain) was repeated statistically 
independently about 60 t imes and the results were then averaged at 
certain instants. This procedure is  equivalent to increasing the effec- 
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five number of particles by a factor of approximately 1.5 and results 
in increased accuracy without substantially increasing the machine 
t ime.  The resultant statistical error was <--'~2%. Therefore all anom- 
alies in the distribution functions and in their behavior as functions 
of t ime which exceeded these error limits were taken to reflect the 
physical behavior of the system. The results are shown in Figs. 1 -7 ,  

The difference between the temperature components 0 = TIt - -  Ta. 
can provide a measure of the deviation of the system from equilibrium. 
In an equilibrium system this difference should be close to zero. Figure 
1 shows 0 = 0(t) as a function of t ime;  TI[ and T Lrelate to light par- 
ticles and E 0 is the initial energy of the particles. The curve inter- 
sects the abscissa axis at 3.5 �9 10 -~ sec (or about 4.2 collisions per 
particle) and subsequently fluctuates weakly around the zero level; 
this indicates that the equilibrium in the light particle group is rela- 
t ively stable. The equilibrium value of the average transverse energy 
component  (Em) . fo r  light particles, as obtained from the solution, is 
approximately 4.5~0 greater than the corresponding thermodynamic-  
equilibrium energy component (Ep)• Figure 2 shows how the ratio of 
these components changes with t ime.  
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Figure 3 shows the t ime behavior of the average total energy of 
light particles. The increase in the average energy for light particles 
at the initial instants is due to the fact that collisions between light 
and heavy particles predominate. This causes transfer of energy from 
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heavy to light particies, since the initial momenta of heavy particles 
are substantially greater than those of the light ones. The increase in 
energy for light particles ceases around 4 �9 10 -9 see (approximately 
5.0 collisions per particle) and subsequently E m gradualIy decreases. 
When complete equilibrium is established in the system the average 
energies of light and heavy particles should be the same. A similar 
situation arises when a beam of charged particles interacts with a 
plasma [8]. In the general case, the energy exchange between the 
beam and the plasma does not cease when the temperatures of both 
components are equaI. Of course, this equilibrium is not total equilib- 
rium. Figure 4 shows the time behavior of the average transverse 
energy component (EM) • for heavy particles. The energy increases 
monotonically with t~me and at the instant when equilibrium is estab- 
lished within the group of light particles the value of (EM) • is a 
fraction of a percent of the equilibrium value of (Ep)• 

Figure 5 shows the distribution functions for light particles over 
their velocity moduli. The time step2~r = 0.476 �9 10 -9 sec is the 
parameter; curves 1, 2, and 8 correspond to t = 2At, 4At, and 65r.  
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For a system of particles with initiai ordered velocities, we have 

considered the kinetics of the process of relaxation to a Max- 
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wetIian equilibrium within a group of light particles. The equilibrium 
is relatively stable, A[ the instant that the Maxwellian distribution is 
established for light particles their average energy is higher than that 
of the heavy particles. We have shown that, when equilibrium with 
respect to T [I and T• is attained, the distribution functions over the 
velocities differ from the Maxwellian distributions at each given 
instant~ it is the time average of the set of distribution functions 
which is in equilibrium, provided that the time interval used in 
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The vertical bars indicate the mean-square deviation of the functions 
from the equilibrium distribution function. A total of 15 functions 
were obtained, but Fig. 5 shows only typical ones which indicate the 
general pattern in the behavior of the distribution functions. At the 
initial instants (below 3 . 5 - 4  �9 10 -9 sec) the functions have an absolute 
maximum at V 0 = 4.27 k m � 9  sec -1 (the initial velocity). As equilib- 
rium is approached the peak decreases. At the same time the dispersion 
of the distribution functions increases. Fluctuations around the equilib- 
rium distribution function are observed after 4 �9 10 -9 see (approximately 
5.0 collisions per particle). It is significant that these fluctuations are 
clearly not involved in the statistical error. At each given instant the 
distributions depart substantially from the equilibrium distribution, but 
after approximately 4 �9 10 -9 see the average over the set of functions 
is a Maxwellian distribution function with respect to the velocities; it 
is indicated in Fig. 5 by the heavy line. The "lifetime" of the indi- 
vidual fluctuation maxima and minima is less than 0.5-1.0  �9 10 -9 see 
(0.55-1.10 collisions per particle). The distribution functions for light 
particles with respect to the iongitudinal (Fig. 6) and transverse (Fig. 
7) velocity components behave similarly. Curves 1, 2, and 8 in Fig. 6 

correspond t o t = A %  4Lxr, and 6Zxr, while curvesl ,  2, 8, and 4 in  
Fig. 7 correspond to t = At ,  3Ar,  55% and 6At ,  The heavy lines 

indicate the equilibrium functions. An interesting feature of the 
curves in Fig. 7 is the appearance of relative maxima at (Vm) • = 
= V 0 = 4.27 km �9 see- : .  This is explained by the fact that the particle 
scattering probability for elastic collision in an element of solid angle 
is given by d(cos O)dr and therefore the probability of scattering at 
an angle 6 in the scattering plane is determined by sin 0 and hence 

is at maximum at 7r/2. For collisions at the initial instants of time, 
this causes the velocity vector for light particles to shift by ~r/2. 
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averaging ls not too large (around 4 . 10 -9 see). We have ohta'hled 
the characteristic times of the relaxation process and the number of 
collisions per particIe. 
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